Distortion tolerance of the Hermann grid

Janos Geier*, Laszlo Sera**, Laszlo Bernath *** email: janos@geier.hu, www.geier.hu/ECVP2005

*Stereo Vision Ltd., Budapest, Nadasdy K. 34, H1048 Hungary,

** Kodolanyi Janos University College, Szekesfehervar, Szabadsagharcosok ut 59, H 8000 Hungary

***Eotvos Lorand University, Budapest, Izabella u. 46, H 1064 Hungary

Half sided humped grid (5)

The problem

- Tou can see that the Hermann grid illusion disappears by applying certain distortions to the lines. What is the cause?
- The 'official model' of the classical Hermann grid illusion is the Baumgartner (or
- lateral inhibition) model. The basis of that model is the unbalanced weighting sum of the different areas in concertic on-off or off-on receptive fields.

Humped grid (4)

Evidently, the Baumgartner model is not a sufficient explanation of that new phenomenon.

Experiment

Definition: At a given distortion type and at a given subject, starting from straight lines and increasing the distortion level step by step, the distortion tolerance means: that distortion level when the illusion disappears.

ANOVA model:

- Dependent variable was the distortion tolerance.
- Independent variables were the distortion type and the line width. (See above the 6 distortion types.)

Method

- Stimuli were shown in random order on a computer monitor: d= 15 inches, 1024×768 pixels, viewing distance 60 cm, gazing with free eye movements.
- Distorted Hermann grids included 7×5 white lines on a black background,
- with 3 different line widths (11, 17, and 23 pixels),
- with constant line spacing (102 pixels). There were twenty-two subjects (n=22).

Measuring the distortion tolerance

- The subject saw 3x6=18 pictures (3 different line widths and 6 distortion types).
- The experimental program generated the successive exposition of pictures and made random order of line widths and of distortion types. The base of distortion was a classical Hermann grid.
- The instruction for subject was to increase the distortion till the illusion disappears.

Results

Two-way ANOVA showed that

- The main effect of distortion type is highly significant ($F_{5.105}$ =15.708, p<0.01);
- The main effect of line width is not significant $(F_{2,4} = 0.649, p>0.05);$

Pairwise comparison showed that

- © differences between the half sided humped line (5) and every other line type were significant;
- differences between all other pairs were not significant.

Conclusions

- The main cause of the Hermann grid illusion is the straightness of the black-
- white edges; Fline width measure plays no significant role;
- Fline width homogenity plays no significant role;
- * the Baumgartner model is not adequate to explain the Hermann grid illusion;
- To modelling the distortion phenomenon need to be found on the straightness of the balck-white line sides - instead of the weighting sum of the on-off areas.

7 -					\	
6 •						
7 • 6 • 5 • 4 • ·		△- <i>-</i> -	, , , , , , , , , , , , , , , , , , ,		Line	ewidth
4		△/-/			 	Thin: 11 pixels Medium: 17 pixels
3		14 140		•	Δ (0)	Thick: 23 pixels
Sinus(1)	Wave(2)	Knot(3)	Hump(4)	Halfsided hump(5)	Asymhump(6)	

Asymmetrical humped grid (6)

	DISTOI	lion Type				
		Multivariat	e Tests ^b			
Effect		Value	F	Hypothesis df	Error df	Sia.
LINEWID	Pillai's Trace	,111	1,254 ^a	2,000	20,000	,307
	Wilks' Lambda	,889	1,254 ^a	2,000	20,000	,307
	Hotelling's Trace	,125	1,254 ^a	2,000	20,000	,307
	Roy's Largest Root	,125	1,254 ^a	2,000	20,000	,307
DISTORTI	Pillai's Trace	,717	8,614 ^a	5,000	17,000	,000
	Wilks' Lambda	,283	8,614 ^a	5,000	17,000	,000
	Hotelling's Trace	2,534	8,614 ^a	5,000	17,000	,000
	Roy's Largest Root	2,534	8,614 ^a	5,000	17,000	,000
LINEWID * DISTORTI	Pillai's Trace	,476	1,088 ^a	10,000	12,000	,438
						4

Roy's Largest Root a. Exact statistic Within Subjects Design: LINEWID+DISTORTI+LINEWID*DISTORTI

Hotelling's Trace

Dependent LINEWID DISTORTI HSKNOT1 SINUS17 HSKNOT1 ASHUMP1 SINUS23

HSKNOT23

ASHUMP23

Descriptive Statistics						
	Mean	Std. Deviation	tion N			
SINUS11	3,45	1,371	22			
WAWE11	3,68	1,937	22			
KNOT11	3,82	1,868	22			
HUMP11	5,86	4,754	22			
HSKNOT11	7,45	6,375	22			
ASHUMP11	4,41	1,919	22			
SINUS17	3,64	1,590	22			
WAWE17	3,86	2,031	22			
KNOT17	4,09	1,411	22			
HUMP17	5,77	3,624	22			
HSKNOT17	7,59	3,924	22			
ASHUMP17	5,59	2,856	22			
SINUS23	4,05	1,618	22			
WAWE23	3,41	1,436	22			
KNOT23	4,41	1,501	22			
HUMP23	4,59	1,790	22			
HSKNOT23	7,32	4,581	22			
ASHUMP23	5,05	2,681	22			

10,000

10,000

10,000

12,000

12,000

,438

,438

1,088^a

1,088^a

1,088^a

Measure:	MEASURE_1					
		Mean Difference			95% Confiden Diffe	ce Interval f rence ^a
(I) TIPUS	(J) TIPUS	(I-J)	Std. Error	Sig. ^a	Lower Bound	Upper Bou
1	2	6,061E-02	,202	1,000	-,607	,7
	3	-,394	,282	1,000	-1,328	,5
	4	-1,697	,515	,052	-3,402	8,316E-
	5	-3,742*	,794	,002	-6,372	-1,1
	6	-1,303*	,265	,001	-2,180	-,4
2	1	-6,061E-02	,202	1,000	-,728	,6
	3	-,455	,178	,274	-1,042	,1
	4	-1,758*	,482	,023	-3,353	-,1
	5	-3,803*	,789	,001	-6,415	-1,1
	6	-1,364*	,279	,001	-2,287	-,4
3	1	,394	,282	1,000	-,540	1,3
	2	,455	,178	,274	-,133	1,0
	4	-1,303	,504	,260	-2,972	,3
	5	-3,348*	,785	,005	-5,947	-,7
	6	-,909	,358	,288	-2,096	,2
4	1	1,697	,515	,052	-8,316E-03	3,4
	2	1,758*	,482	,023	,162	3,3
	3	1,303	,504	,260	-,366	2,9
	5	-2,045*	,433	,002	-3,478	-,6
	6	,394	,437	1,000	-1,054	1,8
5	1	3,742*	,794	,002	1,113	6,3
	2	3,803*	,789	,001	1,191	6,4
	3	3,348*	,785	,005	,750	5,9
	4	2,045*	,433	,002	,613	3,4
	6	2,439*	,736	,050	2,146E-03	4,8
6	1	1,303*	,265	,001	,426	2,1
	2	1,364*	,279	,001	,440	2,2
	3	,909	,358	,288	-,277	2,0
	4	-,394	,437	1,000	-1,841	1,0
	5	-2,439*	,736	,050	-4,877	-2,146E-

References Baumgartner, G. 1960 "Indirekte Grössenbestimmung der receptiven Felder der retina beim Menschen mittels der Hermannscher Gitteraushung." Pflüges Archiv für die gesamte Psychologie, 272, 21-22. Geier, J., Sera, L., and Bernath, L. 2004 "Stopping the Hermann grid illusion by

ECVP 2004 supplement, 53

simple sine distortion." Perception, 33,